Применение сплава алюминия и никеля.

В связи с уменьшением добычи чистых металлов, в промышленности увеличилось применение смесей, и одна из них — сплав алюминия и никеля под названием ални. Это группа магнитотвердых материалов, обладающих большой коэрцитивной силой и остаточной индукцией. Содержание никеля доходит до 20–30%, а алюминия — до 10–20%.

Сплавы никеля и алюминия.
Ални сплав.

Ални-сплавы характеризуются высокой твердостью и хрупкостью, поэтому изготовление постоянных магнитов проводят методом литья. Легирование этих соединений улучшают магнитные свойства. Для этого используются медь, кобальт и некоторые другие элементы. Однако сплав алюминия с никелем, содержащий более 0,03% углерода, снижает эти качества.

Свойства сплавов

Сплав — это однородный твердый материал, состоящий из двух и более компонентов. Один из них является основой.

В ални-соединениях ею выступает никель. Они считаются главными конструкционными материалами, среди которых большое значение имеют сплавы, где в качестве основы применяется железо и алюминий. Все они наделены свойствами основных металлов:

  • электропроводностью,
  • теплопроводностью,
  • пластичностью.

Основной характеристикой этих соединений служит способность к свариванию.

  1. Сплав никеля с алюминием часто применяется в качестве катализатора при гидрогенизации бензола для получения циклогексана, который является основным сырьем в процессе производства нейлоновых изделий. Для придания соединению активных каталитических свойств из поверхностного слоя выщелачивают алюминий при помощи водного раствора едких веществ. В процессе гидрогенизации активность катализатора постепенно падает, и для ее восстановления выщелачивают следующий слой. Полученный таким путем ускоритель называется никелем Ренея (или скелетным). Он обладает способностью самовозгораться на воздухе, поэтому хранят его под слоем воды.

    Никель Ренея.
    Никель Ренея способен самовоспламеняться при контакте с кислородом.
  2. Получение сверхтвердых интерметаллических сплавов проводится путем смешения никелевого и алюминиевого порошков с последующей прессовкой и холодной деформацией. В результате этого происходит изменение механических и физико-механических свойств. При увеличении степени деформации прочность материала повышается, а пластичность — уменьшается. Никель в таком соединении является основой, и его часть составляет 80%, остальное приходится на долю алюминия.
  3. После деформации самонесущее изделие подвергается термической обработке. Благодаря применению такого способа значительно улучшаются термомеханические характеристики никель-алюминиевых сплавов — это стойкость к тепловому удару, сопротивление окислению и термоустойчивость. В противоположность к суперсплавам, при воздействии высоких температур они не требуют дополнительного керамического покрытия, поэтому отпадает проблема соединения металла и керамики. Никель-алюминиевые соединения выдерживают 500 полных циклов тепловых ударов при температуре 1350 °C.
  4. Дальнейшее повышение прочностных характеристик возможно при введении в сплав небольшой части (около 1%) элементов большой прочности — железо, вольфрам, молибден. При этом улучшается прочность при воздействии кратковременных ударных нагрузок.

Область применения

Никель-алюминиевые сплавы, содержащие железо, обычно легируют медью и кобальтом. Полученные соединения используют для изготовления магнитов разнообразных форм. Материал выходит твердый и хрупкий, с крупнозернистой структурой, поэтому изделия из него изготавливают методом отливки, с последующей шлифовкой специальным инструментом. При легировании кобальтом и титаном с применением термомагнитной обработки получаются изделия с наивысшей энергией. Они используются в сильно разомкнутых системах, так как обладают наиболее высокой коэрцитивной силой.

Понятие «сверхпрочный сплав» — часто применяется к высокотемпературным соединениям, которые способны длительное время сохранять надежность, сопротивление ползучести и коррозии при воздействии высоких температур.

Именно эти свойства сплавов на никелевой основе дали возможность использовать их в качестве конструкционного материала для изготовления элементов газотурбинных двигателей. Детали реактивного двигателя — рабочие и сопловые лопатки, диски турбин и другие элементы — работают под воздействием температуры более 1100 °С многие тысячи часов, сохраняя при этом целостность металла.

Лопатки являются одними из самых напряженных элементов газотурбинного двигателя. На них воздействует не только высокая температура, но и огромные статические и динамические нагрузки.

Газотурбинные двигатели.
Сплавы ални – незаменимы при производстве газотурбинных двигателей.

Чтобы предотвратить губительное влияние температурной коррозии, их поверхность покрывается защитным слоем. Для этого используется пакетная цементация либо покрытия, наносимые в газовой среде. В процессе диффузного воздействия происходит обогащение поверхностного слоя обрабатываемой детали алюминием с образованием алюминида никеля, который является основой покрытия.

Благодаря высоким антикоррозионным свойствам никелевые сплавы используются для плакировки сталей, что повышает их стойкость к износу и коррозии.

Плакировка сталей.
Никелевые сплавы – спасение от коррозии.


Adblock
detector